domingo, 28 de abril de 2013

EVENTOS MUTUAMENTE EXCLUYENTES Y NO EXCLUYENTES, DEPENDIENTES E INDEPENDIENTES




Eventos no excluyentes
  • Sacar un 5  y una carta de espadas. Son eventos no excluyentes pues podemos tomar un 5 de espadas.
  • Sacar una carta roja y una carta de corazones. Son eventos no excluyentes pues las cartas de corazones son uno de los palos rojos.
  • Sacar un 9 y una carta negra. Son eventos no excluyentes pues podemos tomar el 9 de espadas o el 9 de tréboles.
Eventos mutuamente excluyentes
Los eventos mutuamente excluyentes son aquellos en los que si un evento sucede significa que el otro no puede ocurrir. Si bien suelen usarse en teorías científicas, también son parte de las leyes y los negocios. Como resultado, entender los eventos mutuamente excluyentes puede ser importante para una variedad de disciplinas.
Fórmula
La fórmula matemática para determinar la probabilidad de los eventos mutuamente excluyentes es P(A U B) = P(A) + P(B). Dicho en voz alta, la fórmula es "Si A y B son evento mutuamente excluyentes, entonces la probabilidad de que A o B suceda es equivalente a la probabilidad del evento A más la probabilidad del evento B".
 
  • Sacar una carta de corazones y una carta de espadas. Son eventos mutuamente excluyentes, las cartas o son de corazones o son de espadas.
  • Sacar una carta numerada y una carta de letras. Son eventos mutuamente excluyentes, las cartas o son numeradas o son cartas con letra.
  • Sacar una carta de tréboles roja.  Son eventos mutuamente excluyentes pues las cartas de tréboles son exclusivamente negras.
No es posible encontrar una sola carta que haga posible que los eventos sucedan a la vez.
EVENTOS DEPENDIENTES, INDEPENDIENTES Y CONDICIONALES
Eventos Independientes

Dos o más eventos son independientes cuando la ocurrencia o no-ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro evento (o eventos). Un caso típico de eventos independiente es el muestreo con reposición, es decir, una vez tomada la muestra se regresa de nuevo a la población donde se obtuvo.

Dos eventos, A y B, son independientes si la ocurrencia de uno no tiene que ver con la ocurrencia de otro.

Por definición, A es independiente de B si y sólo si:A y B, son independientes si la ocurrencia de uno no tiene que ver con la ocurrencia de otro.

Por definición, A es independiente de B si y sólo si:A es independiente de B si y sólo si:

(PnA)=P(A)P(B)


Eventos dependientes

Dos o más eventos serán dependientes cuando la ocurrencia o no-ocurrencia de uno de ellos afecta la probabilidad de ocurrencia del otro (o otros). Cuando tenemos este caso, empleamos entonces, el concepto de probabilidad condicional para denominar la probabilidad del evento relacionado. La expresión P (A|B) indica la probabilidad de ocurrencia del evento A sí el evento B ya ocurrió.

Se debe tener claro que A|B no es una fracción.

P (A|B) = P(A y B) / P (B) o P (B|A) = P(A y B) / P(A)

Probabilidad Condicional = P(A y B) / P (B) o P (B|A) = P(A y B) / P(A)

Probabilidad Condicional

Si A y B son dos eventos en S, la probabilidad de que ocurra A dado que ocurrió el evento B es la probabilidad condicional de A dado B, y se denota:A y B son dos eventos en S, la probabilidad de que ocurra A dado que ocurrió el evento B es la probabilidad condicional de A dado B, y se denota:
P(AlB)
Ejercicios
1.     si se tira un dado calcular la probabilidad de:
A caen 3 puntos o menos o
B caen 5 puntos o mas
Como son Mutuamente excluyentes AnB=0
P(AoB)=P(a)+P(B)
=P(salen 3 o menos)+P(salen 5 o mas)
=3/6 + 2/6
=5/6
2.    se tiene una urna con 50 papeles de colores 15 rojos, 5 morados, 9 verdes, 11 naranjas y 10 azules.
Cual es la probabilidad de:
A sale un papel azul o
B sale un papel rojo
P(AoB)=P(AuB)=P(A)+P(B)
=P(sale un azul)+P(sale 1 rojo)
=10/50 + 15/50
=25/50
=1/2
3.    En la urna A tenemos 7 bolas blancas y 13 negros y en la urna B 12 blancas y 8 negras.
Cual es la probabilidad de que se extraiga una bola blanca de cada una
P(AyB)=P(A)*P(B)
=7/20 * 12/20
=84/400
=81/100
4.     en una baraja de 52 cartas se toma una carta al azar luego se regresa y se toma otra.
Cual es la probabilidad de A la primera sea de diamantes, y B la segunda sea de tréboles.
P(AyB)=P(A) * P(B)
=13/52 * 13/52
=169/2704
5.    Un lote de 27 artículos, tiene 11 defectuosos. Se toma al azar 5 artículos del lote, uno tras otro. Hallar la probabilidad de que sean buenos.

p= 16/27 * 15/26 * 14/25 * 13/24 * 12/23 = 52416/968760

Se lanza una moneda cargada, de modo que la probabilidad de que salga cara es de 2/3 y que salga sello es 1/3.
Si sale cara se escoge al azar un número del 1 al 9; si sale sello se escoge al azar un número del 1 al 5.
Hallar la probabilidad de que se escoja un número par.

P=2/3 * 4/9 + 1/3 * 2/5
= 8/27 + 2/15
=58/135
6.    Supongase que en una caja cerrada se tienen 3 canicas rojas, 3 canicas azules y 4 canicas verdes. Se saca una sola canica ¿cual es la posibilidad de sacar una canica roja?

Canicas rojas: 3
Canicas azules: 3
Canicas verdes: 4
Total de canicas: 3 + 3 + 4 = 10

P (x) = 3 / ( 3 + 3 + 4) = 3/10 = 0,3 = 30%

Existe un 30% de posiblidad de sacar una canica roja.
7.    Considere los sucesos A y B. Supóngase que P(A)= 0,4 ; P(B)= p yP(AUB)= 0,7 . ¿Para que valor de p, los eventos A y B son mutuamente excluyentes? ¿Para que valor de p, los eventos A y B son independientes?
Para que los sucesos A y B sean mutuamente excluyentes entonces P(AB) = 0
P(A
B) = P(A) + P(B) - P(AB) ..... probabilidad de la unión.
Sustituyendo los valores tenemos:
0.7 = 0.4 + P - 0
P = 0.3
Para que los sucesos A y B sean mutuamente excluyentes P = 0.3.

Para que los sucesos Ay B sean independientes entonces P(A
B) = P(A)P(B)
P(A
B) = P(A)P(B) ..... condición de eventos independientes.
Sustituyendo los valores tenemos:
P(A
B) = 0.4*P P = P(AB) / 0.4
La relación anterior se cumple con la única condición que P(A
B) ≠ 0 (no excluyentes).
Para que los sucesos A y B sean independientes P = P(A
B) / 0.4 con P(AB) ≠ 0
8.    Si haya una probabilidad del 10% de que Júpiter se alineará con Marte, y una probabilidad del 50% de que su tirada de una moneda saldrá águilas, entonces ¿qué es la probabilidad de que Júpiter se alineará con Marte y su tirada de la moneda saldrá águilas (suponiendo que Júpiter no tenga ningún efecto en el resultado de su tirada)?
Aquí,
J: Júpiter se alineará con Marte
A: Su tirada saldrá águilas
Pues Júpiter no tiene ningún efecto en su tirada de la moneda, tomamos estes sucesos como independientes, y así la probabilidad de que ambos sucesos ocurrirán es
P(J ∩ A) = P(J)P(A) = (.10)(.50) = .05.
9.    Una caja contiene 4 canicas rojas, 3 canicas verdes y 2 canicas azules. Una canica es eliminada de la caja y luego reemplazada. Otra canica se saca de la caja. Cuál es la probabilidad de que la primera canica sea azul y la segunda canica sea verde?
Ya que la primera canica es reemplazada, el tamaño del espacio muestral (9) no cambia de la primera sacada a la segunda así los eventos son independientes.
P(azul luego verde) = P(azul) · P(verde)
                             
10. Una caja contiene 4 canicas rojas, 3 canicas verdes y 2 canicas azules. Una canica es eliminada de la caja y no es reemplazada. Otra canica se saca de la caja. Cuál es la probabilidad de que la primera canica sea azul y la segunda canica sea verde?
Ya que la primera canica no es reemplazada, el tamaño del espacio muestral para la primera canica (9) es cambiado para la segunda canica (8) así los eventos son dependientes.
P(azul luego verde) = P(azul) · P(verde)
                             
11. - Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.
Solución.
El espacio muestral es el conjunto de todos los sucesos elementales. Los sucesos
elementales son cada uno de los resultados posibles del experimento aleatorio, indescomponibles en otros más simples. Como el experimento consiste en responder al
azar a dos preguntas, cada uno de los posibles patrones de respuesta constituirá un
suceso elemental. Un patrón de respuesta sería contestar verdadero a la primera
pregunta y verdadero a la segunda, lo representamos (V, V). Con esta representación
podemos escribir el espacio muestral como:
E = {(V, V) (V, F) (F, V) (F, F)}
- Otro estudiante responde al azar a 4 preguntas del mismo tipo anterior.
a) Escriba el espacio muestral.
b) Escriba el suceso responder “falso” a una sola pregunta.
c) Escriba el suceso responder “verdadero” al menos a 3 preguntas.
d) Escriba la unión de estos dos sucesos, la intersección y la diferencia del 2º y el 1º.
e) La colección formada por estos 5 sucesos, más el suceso seguro y el suceso
imposible ¿Constituyen un sigma-álgebra?
Solución
a) Con la misma convención del problema anterior, los sucesos elementales serían:
(V, V, V, V) (V, V, V, F) (V, V, F, V) (V, F, V, V)
(F, V, V, V) (V, V, F, F) (V, F, V, F) (V, F, F, V)
(F, V, V, F) (F, V, F, V) (F, F, V, V) (V, F, F, F)
(F, V, F, F) (F, F, V, F) (F, F, F, V) (F, F, F, F)
b) El Suceso responder falso a una sola pregunta será el subconjunto del espacio
muestral formado por todos los sucesos elementales en que solo hay unarespuesta
falo, lo llamaremos A y será:
A= {(V, V, V, F) È (V, V, F, V) È (V, F, V, V) È (F, V, V, V)}
c) El suceso responder verdadero al menos a 3 preguntas, lo llamaremos B y será:
B = {(V, V, V, F) È (V, V, F, V) È (V, F, V, V) È (F, V, V, V) È (V, V, V, V)}
d) Observando los sucesos elementales que los componen se deducen inmediatamente
los siguientes resultados:
A È B = B A U B = A B- A = {(V, V, V, V)}
 
 
12.  Una rata es colocada en una caja con tres pulsadores de colores rojo, azul y blanco. Si pulsa dos veces las palancas al azar:
a) ¿Cuál es la probabilidad de que las dos veces pulse la roja?
b) ¿Cuál es la probabilidad de que pulse la primera vez o la segunda o ambas la tecla azul?
Solución
a) Para que las dos veces pulse la roja tiene que ocurrir que la primera vez pulse la rojay la segunda también pulse la roja, es decir que se verifique el suceso (R1 Ç R2).Ahora bien , como ambos sucesos son independientes, la probabilidad de la intersección es igual al producto de las probabilidades de ambos sucesos. La
probabilidad de estos sucesos se determina mediante la regla de Laplace de casos
favorables (uno), partido por casos posibles (tres)
P(R1 Ç R2) = P(R1) · P(R2) = 1/3 · 1/3 = 1/9
b) En este apartado, claramente, nos piden la probabilidad de la unión de los sucesos pulsar azul la primera vez y pulsar azul la segunda. Ahora bien, estos dos sucesos no son incompatibles, luego la probabilidad de la unión será igual a la suma de las probabilidades menos la probabilidad de la intersección. La probabilidad de la intersección, al igual que en el apartado anterior, se calcula basándonos en el hecho de que son independientes.
P(A1 È A2) = P(A1) + P(A2) – P(A1 Ç A2) = 1/3 + 1/3 – 1/9 = 5/9
 
 
13. Hay 87 canicas en una bolsa y 68 son verdes. Si se escoge una, ¿cuál es la probabilidad de que esta sea verde?

Solución: 

Divide la cantidad de formas de elegir una canica verde (68) por la cantidad total de canicas (87)

68 ÷ 87 = 0.781609

Redondea a la precisión deseada (es decir 0.781609 redondeado a centésimos es 0.78)
 
14. i yo tengo una canasta llena de peras y manzanas, de las cuales hay 20 peras y 10 manzanas. ¿Qué fruta es más probable que saque al azar de la canasta?

Para este ejemplo tenemos que 30 es el total de frutas en la canasta; es decir los casos posibles. Para calcular la probabilidad de sacar una manzana mis casos favorables son 10 puesto que existen sólo 10 manzanas. Así, aplicando la fórmula obtenemos que:

P(Manzana)=10/30=1/3= 33.3% probable

Calculando igual, la probabilidad de sacar pera es:

P(Pera)=20/30=2/3= 66.7% probable

Como 66.7 es mayor que 33.3 es más probable que saque una pera, pues hay más peras que manzanas en la canasta.
15. En 15 minutos podemos determinar como máximo si cuatro donantes son del tipo requerido, ya que en el peor de los casos si los 4 primeros no son del tipo adecuado ya no nos daría tiempo a la transfusión, (ya que 5 pruebas * 3 minutos = 15 minutos) asi que tenemos que deternimar la probabilidad que como máximo el cuarto donante sea del tipo buscado, para esto necesitamos la distribución geometrica, 

P(X=x) = p*(1-p)^(x-1)

donde

p=0.20 (20%)

y debemos calcular

P(X<=4) =

P(X=1) + P(X=2) + P(X=3) + P(X=4)

P(X=1) = 0.2*(1-0.2)^(1-1) = 0.2
P(X=2) = 0.2*(1-0.2)^(2-1) = 0.16
P(X=3) = 0.2*(1-0.2)^(3-1) = 0.128
P(X=4) = 0.2*(1-0.2)^(4-1) = 0.1024

Y sumando las probabilidades

P(X<=4) = 0.5904

Que tambien se puede calcular directamente sabiendo que

P(X<=x) = 1-(1-p)^x

P(X<=4) = 1-(1-0.2)^4 = 0.5904 como anteriormente.

Por lo tanto la probabilidad que sobreviva es de 0.5904 (59.04%)
16. Al lanzar un dado tres veces, ¿según las probabilidades, 
es conveniente apostar a favor o en contra de obtener al menos una vez el 2? 
"Al menos una vez el 2" quiere decir "alguna vez
se obtiene el 2". Llamando A={alguna vez se obtiene 
el 2}, su complemento es 
Ac={ninguna vez se obtiene el 2}
P(Ac)=P(no sale 2 en 1er lanzam.)• P(no sale 2 en 2º 
lanzam.)•P(no sale 2 en 3er lanzam.)=5/6•5/6•5/6 
=125/216 0,58. 
Luego, como P(A)+P(Ac)=1 
P(A)=1-0,58=0.42=42%. Por lo tanto, no conviene
apostar a favor.
 
 
17. En una tómbola hay dos bolitas blancas y tres bolitas negras, ¿cuál es la probabilidad de sacar una blanca y después una negra?
a) Si hay reposición, esto es, después de sacar la
primera bolita, ésta se devuelve a la tómbola.
b) Si no hay reposición, esto es, después de sacar
la primera bolita, ésta no se devuelve a la tómbola.
a) En este caso los eventos son independientes ya
que al reponer la bolita la ocurrencia de un evento no
afecta al otro.
Sean los eventos A: "sacar una bolita blanca" y B:
"sacar una bolita negra", entonces, usando
P(A B)=P(A)•P(B), P(A B)=2/5•3/5=6/25
b) Si no hay reposición, los eventos son dependientes
ya que la bolita no es repuesta a la tómbola, por lo que
ocupamos
P(A B)=P(A)•P(B/A)=2/5·3/4=3/10
 
 
18. Repita el problema 2) anterior, pero ahora la pregunta es ¿cuál es la probabilidad de sacar una blanca y una negra? (note que ahora no importa el orden).
a) Si hay reposición, esto es, después de sacar la
primera bolita, ésta se devuelve a la tómbola
b) Si no hay reposición, esto es, después de sacar
la primera bolita, ésta no se devuelve a la tómbola.
a) Usando la definición, el número total de casos
posibles es 5•5=25 y el número de casos favorables
es 2•3+3•2=12(una blanca y una negra ó una negra
y una blanca), luego, P(A)=12/25=48%. O bien,
usando las propiedades,
P(A)=P(sacar blanca)•P(sacar después negra)
+ P(sacar negra)•P(sacar después
blanca)=2/5·3/5+3/5·2/5=12/35=48%
b) Número de casos posibles: 5•4=20 y el número de
casos favorables =2•3+3•2=12, luego,
P(B)=12/20=3/5=60%.
O bien, usando las propiedades
P(B)=P(sacar blanca)•P(sacar negra/sabiendo que
ha salido blanca) +P(sacar negra)•P(sacar
blanca/sabiendo que ha salido negra)
=2/5•3/4+3/5•2/4=3/5=60%
 
 
19. Para obtener licencia para conducir, es necesario aprobar tanto el examen teórico como el práctico. Se sabe que la prob. que un alumno apruebe la parte teórica es 0,68, la de que apruebe la parte práctica es 0,72 y la de que haya aprobado alguna de las dos partes es 0,82. Si se elige un alumno al azar, ¿cuál es la prob. de que apruebe el examen para obtener licencia?
Sea A: aprobar la parte teórica, (P(A)=0,68)
Sea B: aprobar la parte práctica, (P(B)=0,72)
Debemos calcular la prob. de A y B, P(A B).
Usando P(A B) = P(A)+P(B)-P(A B), despejamos P(A B):
P(A B)=P(A)+P(B)-P(A B) y reemplazando,
P(A B)=0,68+0,72-0,82=0,58=58%
 
20. Hay 87 canicas en una bolsa y 68 son verdes. Si se escoge una, ¿cuál es la probabilidad de que esta sea verde?
Solución:
Divide la cantidad de formas de elegir una canica verde (68) por la cantidad total de canicas (87)
68 ÷ 87 = 0.781609
Redondea a la precisión deseada (es decir 0.781609 redondeado a centésimos es 0.78)

21.-Si un solo dado es lanzado al aire y el jugador puede ganar si obtiene el punto 1 o si obtiene el punto 6, entonces en tal caso estamos hablando de dos sucesos que son «mutuamente excluyentes entre sí», porque en un solo lanzamiento del dado no pueden aparecer los dos eventos al mismo tiempo (o cae 1, o cae 6, o cae cualquier otro resultado del dado). Por consiguiente, si el jugador quiere calcular la probabilidad de ganar en el lanzamiento del dado puede asumir que el evento A es la aparición del punto 1 del dado que tiene una probabilidad de ocurrencia de 1/6, mientras que el evento B es la aparición del punto 6 del dado que tiene una probabilidad de ocurrencia de 1/6, y por lo tanto la probabilidad de ganar se calcula mediante la sumatoria ya indicada: P(A,B) = P(A)+P(B) = 1/6+1/6 = 2/6, o lo que es lo mismo, el jugador para ganar en el lanzamiento del dado tiene 2 eventos a su favor sobre 6 eventos posibles:


22.- supongamos que un mazo normal de 52 cartas es mezclado y que un jugador puede ganar un premio si en la primera carta extraída del mazo aparece un as (A) o un rey (K), caso en el cual ambos sucesos también son mutuamente excluyentes entre sí porque la carta extraída o tiene un valor o tiene el otro pero no puede tenerlos ambos. En consecuencia, si se asume que el evento A es la extracción de cualquier as (A) con una probabilidad de ocurrencia de 4/52, y el evento B es la extracción de cualquier rey (K) que tiene una probabilidad de ocurrencia de 4/52, entonces la probabilidad de ganar obteniendo un as o un rey en un solo ensayo es de: P(A,B) = P(A)+P(B) = 4/52+4/52 = 8/52, o lo que es lo mismo, el jugador para ganar tiene 8 eventos favorables (cuatro ases y cuatro reyes) sobre 52 cartas disponibles en el mazo.

23.- 1 si se tira un dado calcular la probabilidad de:
A caen 3 puntos o menos o
B caen 5 puntos o mas
Como son Mutuamente excluyentes AnB=0
P(AoB)=P(a)+P(B)
=P(salen 3 o menos)+P(salen 5 o mas)
=3/6 + 2/6
=5/6

24.-se tiene una urna con 50 papeles de colores 15 rojos, 5 morados, 9 verdes, 11 naranjas y 10 azules.
Cual es la probabilidad de:
A sale un papel azul o
B sale un papel rojo
P(AoB)=P(AuB)=P(A)+P(B)
=P(sale un azul)+P(sale 1 rojo)
=10/50 + 15/50
=25/50
=1/2

PROBABILIDAD CONJUNTA

Regla de la Multiplicación  o  Probabilidad   Conjunta:  Esta  regla  expresa  la  probabilidad  de  que  ocurra  un  suceso  A  y  un  suceso  B.
Pueden  ocurrir  dos  formas:   que  el  segundo  suceso  depende   del  primero  o   que  ninguno  dependa  del  otro,  por  lo  tanto  veremos  estas  dos  formas:
Para   sucesos   dependientes:
                                                                            
NOTA:   Si  observas esta   regla,  puedes  darte  cuenta  que  se  relaciona   fuertemente   con  la  Intersección   entre   conjuntos  ( y ), es  una  multiplicación.
spades_ace_md_wht.gif (9178 bytes)
Ejemplo  1: Se  sacan   dos  cartas  sin  restitución  (  se  saca  la  primera   se  observa  y  no  se  vuelve  a  meter ) de  una  baraja  de   52  cartas, ¿ Cuál  es  la  probabilidad  de  que   ambas  sean  reyes ?
Sea  R = sacar  un rey
Observe  que lo  que   necesitamos  es   la  probabilidad  de  sacar un  rey  en la   primera  carta  y  un  rey  en la  segunda, es  decir:
                                                                                   
Para   sucesos  independientes:                           
                                                                              

Ejemplo  2: Se  sacan   dos  cartas  con  restitución   una  baraja  de   52  cartas, ¿ Cuál  es  la  probabilidad  de  que  ambas  sean  corazones ?
Sea  C = carta   de  corazones







 



PROBABILIDAD SIMPLE

Probabilidad simple

Cantidad de formas en que un resultado específico va a suceder
Probabilidad =

Cantidad total de posibles resultados
 1.-  Hay 87 canicas en una bolsa y 68 son verdes. Si se escoge una, ¿cuál es la probabilidad de que esta sea verde?
Solución:
  • Divide la cantidad de formas de elegir una canica verde (68) por la cantidad total de canicas (87)
  • 68 ÷ 87 = 0.781609
  • Redondea a la precisión deseada (es decir 0.781609 redondeado a centésimos es 0.78)
2.- Calcular la probabilidad de que salga "cara" al lanzar una moneda:

Casos favorables: 1 (que salga "cara")
Casos posibles: 2 (puede salir "cara" o "cruz")
Probabilidad = (1 / 2 ) * 100 = 50 %

3.- Calcular la probabilidad de que salga "3" al lanzar un dado:

Casos favorables: 1 (que salga "3")
Casos posibles: 6 (puede salir "1, 2, 3, 4, 5 o 6")
Probabilidad = (1 / 6 ) * 100 = 16,6 %

4.-Calcular la probabilidad de que salga "un número entre 1 y 4 " al lanzar un dado:

Casos favorables: 4 (sería válido cualquiera de los siguientes resultados "1, 2, 3, o 4")
Casos posibles: 6 (puede salir "1, 2, 3, 4, 5 o 6")
Probabilidad = (4 / 6 ) * 100 = 66,6 %

5.-Calcular la probabilidad de que salga el número 76 al sacar una bolita de una bolsa con 100 bolitas numeradas del 1 al 100:

Casos favorables: 1 (sacar el número 76)
Casos posibles: 100 (hay 100 números en la bolsa)
Probabilidad = (1 / 100 ) * 100 = 1 %

6.-Calcular la probabilidad de que salga "un número entre 1 y 98" al sacar una bolita de una bolsa con 100 bolitas numeradas del 1 al 100:

Casos favorables: 98 (valdría cualquier número entre 1 y 98)
Casos posibles: 100 (hay 100 números en la bolsa)
Probabilidad = (98 / 100 ) * 100 = 98 %


7.-¿Que probabilidades hay de que al lanzar una vez los dados salga 12, o sea dos seises?

Bueno, las opciones posibles son 11 (porque no puedes sacar 1; el menor número que puedes sacar con dos dados es 1 + 1, o sea 2, y el mayor es 6 + 6, o sea 12). Entonces, la probabilidad de que al lanzarlos una vez te salga 12 es de 1/11: una vez, cada once tiradas. Esto lo aprovechan los casinos para ganar siempre.

8.-Supongamos ahora que en tu ciudad hay un millón de coches. Y cada día se roban 100 coches, es decir 36,500 coches al año. ¿Qué probabilidad hay de que se roben tu coche en un año? Pues 36,500/1,000,000. Este dato permite a las aseguradoras saber cuánto cobrar por un seguro contra robo.


9.-Supongamos que una persona de cada 10 es homosexual (1/10). ¿Cuántos homosexuales habrá en un grupo de diez personas? Probablemente uno. ¿Y en un salón de clases donde hay 50 alumnos? Para calcular la probabilidad multiplica 50 por 1/10. El resultado es 5. Es probable que cinco de 50 sean homosexuales.

10.-Aproximadamente la mitad de los niños que nacen son varones y la otra mitad son mujeres. ¿Qué probabilidad hay de que tu primer hijo sea varón? Pues 1/2. ¿Y de que el segundo también lo sea? También 1/2. ¿Y de que el tercero también lo sea? Correcto: 1/2. Entonces, ¿qué probabilidad hay de que los tres sean puros varones? Pues tienes que multiplicar 1/2 * 1/2 * 1/2, es decir, 1/8. Una de cada ocho familias con tres hijos tendrá unicamente varones.

11.-¿Qué probabilidad tengo de sacar el as de picas al escoger una carta de una baraja?
Hay 52 cartas diferentes, por lo tanto tu probabilidad de sacar el as de picas (o cualquier carta que elijas) es 1/52.

12.-


TÉCNICAS DE CONTEO

ECNICAS DE CONTEO

El principio fundamental en el proceso de contar ofrece un método general para contar el numero de posibles arreglos de objetos dentro de un solo conjunto o entre carios conjuntos. Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar.

Si un evento A puede ocurrir de n1 maneras y una vez que este ha ocurrido, otro evento B puede n2 maneras diferentes entonces, el número total de formas diferentes en que ambos eventos pueden ocurrir en el orden indicado, es igual a  n1 x n2.

1.-¿De cuántas maneras pueden repartirse 3 premios a un conjunto de 10 personas, suponiendo que cada persona no puede obtener más de un premio?

Aplicando el principio fundamental del conteo, tenemos 10 personas que pueden recibir el primer
premio. Una vez que éste ha sido entregado, restan 9 personas para recibir el segundo, y
posteriormente quedarán 8 personas para el tercer premio. De ahí que el número de maneras
distintas de repartir los tres premios.

n
10 x 9 x 8 = 720


2.-¿Cuántas placas de automóvil se pueden hacer utilizando dos letras seguidas de tres cifras? No se
admiten repeticiones.

26 x 25 x 10 x 9 x 8 = 468000

n un número entero positivo, el producto n (n-1) (n-2)...3 x 2 x 1 se llama factorial de n.
El símbolo ! se lee factorial y es el producto resultante de todos los enteros positivos de 1 a n; es decir, sea 
n
5! = 5 x 4 x 3 x 2 x 1 = 120
Por definición 0! = 1

 Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos los posibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.

Si, sin embargo, hay un gran número de posibles resultados tales como el número de niños y niñas por familias con cinco hijos, sería tedioso listar y contar todas las posibilidades. Las posibilidades serían, 5 niños, 4 niños y 1 niña, 3 niños y 2 niñas, 2 niños y 3 niñas, etc.

 Para facilitar el conteo examinaremos tres técnicas:

* La técnica de la multiplicación
* La tecnica aditiva
* La tecnica de la suma o Adicion
* La técnica de la permutación
* La técnica de la combinación.

PRINCIPIO DE LA MULTIPLICACION

Si se desea realizar una actividad que consta de r pasos, en donde el primer paso de la actividad a realizar  puede ser llevado a cabo de N1 maneras o formas, el segundo paso de N2 maneras o formas y el r-ésimo paso de Nr maneras o formas, entonces esta actividad puede ser llevada a efecto de. El principio multiplicativo implica que cada uno de los pasos de la actividad deben ser llevados a efecto, uno tras otro. Si un evento E1 puede suceder de n1 maneras diferentes, el evento E2 puede ocurrir de n2 maneras diferentes, y así sucesivamente hasta el evento Ep el cual puede ocurrir de np maneras diferentes, entonces el total de maneras distintas en que puede suceder el evento “ocurren E1 y E2…..y Ep” es igual a producto.


 N1 x N2 x ..........x  Nr  maneras o formas
Ejemplo:
3.- Se dispone de 3 vías para viajar de C1 a C2   y de 4 vías para viajar de C2 a C1. ¿De cuántas formas se puede organizar el viaje de ida y vuelta de C1 a C2.Respuesta: (3)(4)=12
4.- Una persona desea construir su casa, para lo cuál considera que puede construir los cimientos de su casa de cualquiera de dos maneras (concreto o block de cemento), mientras que las paredes las puede hacer de adobe, adobón o ladrillo, el techo puede ser de concreto o lámina galvanizada y por último los acabados los puede realizar de una sola manera ¿cuántas maneras tiene esta persona de construir su casa? Solución:
Considerando que r = 4 pasos
N1= maneras de hacer cimientos = 2
N2= maneras de construir paredes = 3
N3= maneras de hacer techos = 2
N4= maneras de hacer acabados = 1
N1 x N2 x N3 x N4 = 2 x 3 x 2 x 1 = 12 maneras de construir la casa
El principio multiplicativo, el aditivo y las técnicas de conteo que posteriormente se tratarán nos proporcionan todas las maneras o formas posibles de como se puede llevar a cabo una actividad cualquiera.


5.-¿Cuántas placas para automóvil pueden ser diseñadas si deben constar de tres letras seguidas de cuatro números, si las letras deben ser tomadas del abecedario y los números de entre los dígitos del 0 al 9?, a. Si es posible repetir letras y números, b. No es posible repetir letras y números, c. Cuántas de las placas diseñadas en el inciso b empiezan por la letra D y empiezan por el cero, d. Cuantas de las placas diseñadas en el inciso b empiezan por la letra D seguida de la G.
Solución:
a.      Considerando 26 letras del abecedario y los dígitos del 0 al 9
26 x 26 x 26 x 10 x 10 x 10 x 10 = 75,760,000 placas para automóvil que es posible diseñar
b.      26 x 25 x 24 x 10 x 9 x 8 x 7 = 78,624,000 placas para automóvil
c.      1 x 25 x 24 x 1 x 9 x 8 x 7 = 302,400 placas para automóvil
d.      1 x 1 x 24 x 10 x 9 x 8 x 7 = 120,960 placas para automóvil


6.-¿Cuántos números telefónicos es posible diseñar, los que deben constar de seis dígitos tomados del 0 al 9?, a. Considere que el cero no puede ir al inicio de los números y es posible repetir dígitos, b. El cero no debe ir en la primera posición y no es posible repetir dígitos, c. ¿Cuántos de los números telefónicos del inciso b empiezan por el número siete?, d. ¿Cuántos de los números telefónicos del inciso b forman un número impar?.
Solución:
a.      9 x 10 x 10 x 10 x 10 x 10 = 900,000 números telefónicos
b.      9 x 9 x 8 x 7 x 6 x 5 = 136,080 números telefónicos
c.      1 x 9 x 8 x 7 x 6 x 5 = 15,120 números telefónicos
d.      8 x 8 x 7 x 6 x 5 x 5 = 67,200 números telefónicos


PRINCIPIO ADITIVO.

Si se desea llevar a efecto una actividad, la cuál tiene formas alternativas para ser realizada, donde la primera de esas alternativas puede ser realizada de M maneras o formas, la segunda alternativa puede realizarse de N maneras o formas ..... y la última de las alternativas puede ser realizada de W maneras o formas, entonces esa actividad puede ser llevada  a cabo de,

                        M + N + .........+ W  maneras o formas

Ejemplos:
7.- Una persona desea comprar una lavadora de ropa, para lo cuál ha pensado que puede seleccionar de entre las marcas Whirpool, Easy y General Electric, cuando acude a hacer la compra se encuentra que la lavadora de la marca W se presenta en dos tipos de carga ( 8 u 11 kilogramos), en cuatro colores diferentes y puede ser automática o semiautomática, mientras que la lavadora de la marca E, se presenta en tres tipos de carga (8, 11 o 15 kilogramos), en dos colores diferentes y puede ser automática o semiautomática y la lavadora de la marca GE, se presenta en solo un tipo de carga, que es de 11 kilogramos, dos colores diferentes y solo hay semiautomática. ¿Cuántas maneras tiene esta persona de comprar una lavadora?


Solución:

M = Número de maneras de seleccionar una lavadora Whirpool
N = Número de maneras de seleccionar una lavadora de la marca Easy
W = Número de maneras de seleccionar una lavadora de la marca General Electric


      M = 2 x 4 x 2 = 16 maneras

N = 3 x 2 x 2 = 12 maneras

W = 1 x 2 x 1 = 2 maneras

 M + N + W = 16 + 12 + 2 = 30 maneras de seleccionar una lavadora

8.- Rafael Luna desea ir a las Vegas o a Disneylandia  en las próximas vacaciones de verano, para ir a las Vegas él tiene tres medios de transporte para ir de Chihuahua al Paso Texas y dos medios de transporte para ir del Paso a las Vegas, mientras que para ir del paso a Disneylandia él tiene cuatro diferentes medios de transporte, a) ¿Cuántas maneras diferentes tiene Rafael de ir a las Vegas o a Disneylandia?, b) ¿Cuántas maneras tiene Rafael de ir a las Vegas o a Disneylandia en un viaje redondo, si no se regresa en el mismo medio de transporte en que se fue?.
Solución:
a) V = maneras de ir a las Vegas
    D = maneras de ir a Disneylandia
V = 3 x 2 = 6 maneras
D = 3 x 4 = 12 maneras
V + D = 6 + 12 = 18 maneras de ir a las Vegas o a Disneylandia
b) V = maneras de ir y regresar a las Vegas
    D = maneras de ir y regresar a Disneylandia
V = 3 x 2 x 1 x 2 = 12 maneras
D = 3 x 4 x 3 x 2 = 72 maneras
V + D = 12 + 72 = 84 maneras de ir a las Vegas o a Disneylandia en un viaje redondo


PRINCIPIO DE LA SUMA O ADICCION

Si una primera operación puede realizarse de m maneras y una segunda operación de n maneras, entonces una operación o la otra pueden efectuarse de:
                      m+n maneras.

Ejemplo:
9.-Una pareja que se tiene que casar, junta dinero para el enganche de su casa, en el fraccionamiento lomas de la presa le ofrecen un modelo económico ó un condominio, en el fraccionamiento Playas le ofrecen un modelo económico como modelos un residencial, un californiano y un provenzal. ¿Cuántas alternativas diferentes de vivienda le ofrecen a la pareja?

PRESA                     PLAYAS
Económico             Residencial
Condominio           Californiano
                              Provenzal
   m=2                           n=3

           2+3= 5 maneras


PRINCIPIO DE PERMUTACION:

A diferencia de la formula de la multiplicación, se la utiliza para determinar el numero de posibles arreglos cuando solo hay un solo grupo de objetos. Permutación: un arreglos o posición de r objetos seleccionados de un solo grupo de n objetos posibles. Si nos damos cuenta los arreglos a, b, c y b, a, c son permutaciones diferentes, la formula que se utiliza para contar el numero total de permutaciones distintas es:
                                               

                                              FÓRMULA: n P r = n! (n - r)

Ejemplo: 
10.-Como se puede designar los cuatro primeros lugares de un concurso, donde existen 15 participantes?
 Aplicando la formula de la permutación tenemos:

 
                                                  
 n P r = n! (n - r)! = 15! = 15*14*13*12 *11*10*9*8*7*6*5*4*3*2*1 (15-4)! 11*10*9*8*7*6*5*4*3*2*1 = 32760

Donde: n= número total de objetos r= número de objetos seleccionados!= factorial, producto de los números naturales entre 1 y n.
NOTA: se puede cancelar números cuando se tiene las mismas cifras en numerador y denominador. 
11.-¿De cuántas maneras es posible plantar en una línea divisoria de un terreno dos nogales, cuatro manzanos y tres ciruelos? Solución:
n = 9 árboles
x1 = 2 nogales
x2 = 4 manzanos
x3 = 3 ciruelos
                  9P2,4,3 = 9! / 2!4!3! = 1260 maneras de plantar los árboles


12.- Si un equipo de fútbol soccer femenil participa en 12 juegos en una temporada, ¿cuántas maneras hay de que entre esos doce juegos en que participa, obtenga 7 victorias, 3 empates y 2 juegos perdidos?
Solución:
n = 12 juegos
x1 = 7 victorias
x2 = 3 empates
x3 = 2 juegos perdidos

13.- ¿Cuántas claves de acceso a una computadora será posible diseñar con los números 1,1,1,2,3,3,3,3?, b.¿cuántas de las claves anteriores empiezan por un número uno seguido de un dos?, c. ¿cuántas de las  claves del inciso a empiezan por el número dos y terminan por el número tres?
Solución:
a. n = 8 números
    x1 = 3 números uno
    x2 = 1 número dos
    x3 = 4 números cuatro
                        8P3,1,4 = 8! / 3!1!4! = 280 claves de acceso
14.-¿Cuántas maneras hay de asignar los cuatro primeros lugares de un concurso de creatividad que se verifica en las instalaciones de nuestro instituto, si hay 14 participantes?
Solución:
Haciendo uso del principio multiplicativo,
14x13x12x11 = 24,024 maneras de asignar los primeros tres lugares del concurso

15.- ¿Cuantas representaciones diferentes serán posibles formar, si se desea que consten de Presidente, Secretario, Tesorero, Primer Vocal y Segundo Vocal?, sí esta representación puede ser formada de entre 25 miembros del sindicato de una pequeña empresa.
Solución:
Por principio multiplicativo:
25 x 24 x 23 x 22 x 21 = 6,375,600 maneras de formar una representación de ese sindicato que conste de presidente, secretario, etc., etc.
Por Fórmula:
n = 25,      r = 5
25P5 = 25!/ (25 -5)! = 25! / 20! = (25 x 24 x 23 x 22 x 21 x....x 1) / (20 x 19 x 18 x ... x 1)=
          = 6,375,600 maneras de formar la representación



 


PRINCIPIO DE COMBINACION:

En una permutación, el orden de los objetos de cada posible resultado es diferente. Si el orden de los objetos no es importante, cada uno de estos resultados se denomina combinación. Por ejemplo, si se quiere formar un equipo de trabajo formado por 2 personas seleccionadas de un grupo de tres (A, B y C). Si en el equipo hay dos funciones diferentes, entonces si importa el orden, los resultados serán permutaciones. Por el contrario si en el equipo no hay funciones definidas, entonces no importa el orden y los resultados serán combinaciones. Los resultados en ambos casos son los siguientes:


Permutaciones: AB, AC, BA, CA, BC, CB
Combinaciones: AB, AC, BC

Combinaciones: Es el número de formas de seleccionar r objetos de un grupo de n objetos sin importar el orden.
La fórmula de combinaciones es:

                                                          n C r = n!                          r! (n – r)!

Ejemplo: 
16.-En una compañía se quiere establecer un código de colores para identificar cada una de las 42 partes de un producto. Se quiere marcar con 3 colores de un total de 7 cada una de las partes, de tal suerte que cada una tenga una combinación de 3 colores diferentes. ¿Será adecuado este código de colores para identificar las 42 partes del producto?
Usando la fórmula de combinaciones:
 

n C r = n! = 7! = 7! = 35
 r! (n – r )!  3! (7 – 3)!  3! 4!
17.-Si se cuenta con 14 alumnos que desean colaborar en una campaña pro limpieza del Tec, cuantos grupos de limpieza podrán formarse si se desea que consten de 5 alumnos cada uno de ellos, b.si entre los 14 alumnos hay 8 mujeres, ¿cuantos de los grupos de limpieza tendrán a 3 mujeres?, c.¿cuántos de los grupos de limpieza contarán con 4 hombres por lo menos? Solución:
a. n = 14,  r = 5
                                           14C5 = 14! / (14 - 5 )!5! = 14! / 9!5!
                                         = 14 x 13 x 12 x 11 x 10 x 9!/ 9!5!
                                         = 2002 grupos
18.-Entre los 2002 grupos de limpieza hay grupos que contienen solo hombres, grupos que contienen solo mujeres y grupos mixtos, con hombres y mujeres.
b. n = 14 (8 mujeres y 6 hombres),           r = 5
En este caso nos interesan aquellos grupos que contengan  3 mujeres y 2 hombres
                                           8C3*6C2  = (8! / (8 -3)!3!)*(6! / (6 - 2)!2!)
                                                 = (8! / 5!3!)*(6! / 4!2!)
                                                 = 8 x7 x 6 x 5 /2!
                                                 = 840 grupos con 3 mujeres y 2 hombres, puesto que cada grupo debe constar de 5 personas
c. En este caso nos interesan grupos en donde haya 4 hombres o más
Los grupos de interés son = grupos con 4 hombres + grupos con 5 hombres
                          = 6C4*8C1    +     6C5*8C0 =  15 x 8   +   6 x 1 = 120 + 6 = 126

19.-Para contestar un examen un alumno debe contestar 9 de 12 preguntas,
a. ¿Cuántas maneras tiene el alumno de seleccionar las 9 preguntas?,
b. ¿Cuántas maneras tiene si forzosamente debe contestar las 2  primeras preguntas?,
c. ¿Cuántas maneras tiene si debe contestar una de las 3 primeras preguntas?,
d .¿Cuántas maneras tiene si debe contestar como máximo una de las 3 primeras preguntas?
Solución:
a.  n = 12,    r = 9
12C9 = 12! / (12 - 9)!9! = 12! / 3!9! = 12 x 11 x 10 / 3!
 = 220 maneras de seleccionar las nueve preguntas o dicho de otra manera,
el alumno puede seleccionar cualquiera de 220 grupos de 9 preguntas para contestar el examen
b.      2C2*10C7 = 1 x 120 = 120 maneras de seleccionar las 9 preguntas entre las que están las dos primeras preguntas
c.       3C1*9C8 = 3 x 9 = 27 maneras de seleccionar la 9 preguntas entre las que está una de las tres primeras preguntas
d.      En este caso debe seleccionar 0 o 1 de las tres primeras preguntas
 3C0*9C9  +  3C1*9C8 = (1 x 1) + (3 x 9) = 1 + 27 = 28 maneras de seleccionar las preguntas a contestar


20.- Una señora desea invitar a cenar a 5 de 11 amigos que tiene, a. ¿Cuántas maneras tiene de invitarlos?, b. ¿cuántas maneras tiene si entre ellos está una pareja de recién casados y no asisten el uno sin el otro, c. ¿Cuántas maneras tiene de invitarlos si Rafael y Arturo no se llevan bien y no van juntos?
Solución:
a. n = 11,    r = 5
      11C5 = 11! / (11 - 5 )!5! = 11! / 6!5!
                = 11 x 10 x 9 x 8 x 7 x 6! / 6!5!
                = 462 maneras de invitarlos
Es decir que se pueden formar 462 grupos de cinco personas para ser invitadas a cenar.